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Reasons for Review Lecture

• Signals and systems, and digital signal processing are usually one 
semester advanced undergraduate courses for electrical 
engineering majors

• In no way will this 1+ hour lecture to justice to this large amount of 
material

• The lecture will present an overview of the material from these two 
courses that will be useful for understanding the overall Radar 
Systems Engineering course

– Goal of lecture-

 

Give non EE majors a quick view of material; they may 
wish to study in more depth to enhance their understanding of this 
course.

• UC Berkeley has an excellent, free, video Signals and Systems 
course (ECE 120) online at //webcast.berkeley.edu

– http://webcast.berkeley.edu/course_details.php?seriesid=1906978405
– Given in Spring 2007

http://webcast.berkeley.edu/course_details.php?seriesid=1906978405
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Signal Processing

• Signal processing is the manipulation, analysis and 
interpretation of signals.

• Signal processing includes:
– Adaptive filtering / thresholding
– Spectrum analysis
– Pulse compression
– Doppler filtering
– Image enhancement
– Adaptive antenna beam forming, and
– A lot of other non-radar stuff ( Image processing, speech 

processing, etc.

• It involves the collection, storage and transformation of data
– Analog and digital signal processing
– A lot of processing “horsepower”

 

is usually required
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Outline

• Continuous Signals

• Sampled Data and Discrete Time 
Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Continuous Time Signal

( )tx
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( ) ( ) ( )
( )
( ) 532 t25tttx

300t12tx
t3cos79tsin100tx
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Examples:
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Continuous Time Signal

t0

( )tx ( )tx

t0

• Types of continuous time signals
– Periodic or Non-periodic

Non-periodic

• • •• • •

( ) ( )txttx =Δ+

Periodic
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Continuous Time Signal

t

• Types of continuous time signals
– Periodic or Non-periodic
– Real or Complex

 Radar signals are complex

( )[ ]txRe

t0 0

( )[ ]txIm

• • • • • • • • • • • •

is a complex periodic signal( )tx
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Continuous, Linear, Time Invariant 
Systems

Continuous
Linear Time

Invariant
System

( )tx ( )ty

• Continuous
– If        and         are continuous time functions, the 

system is a continuous time system

• Linear
– If the system satisfies

• Time Invariant
– If a time shift in the input causes the same time shift in 

the output

( )tx

( ) ( )[ ] == TtxTty

( )ty

( ) ( )[ ] ( ) ( )tytytxtxT 2121 β+α=β+α

Operator
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Linear Time Invariant Systems 
(Delta Function)

• The impulse response         is the response of the system when 
the input is  

Continuous
Linear Time

Invariant
System

( )tx ( )ty
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Linear Time Invariant Systems

Continuous
Linear Time

Invariant
System

( )tx ( )ty
Continuous
Linear Time

Invariant
System

( )tδ ( )th

Definition : Convolution of Two Functions

( ) ( ) ( ) ( ) ττ−τ≡∗ ∫
∞

∞−

dtxxtxtx 2121

Reversed
and 

Shifted
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Linear Time Invariant Systems

Continuous
Linear Time

Invariant
System

( )tx ( )ty
Continuous
Linear Time

Invariant
System

( )tδ ( )th

( ) ( ) ( ) ( ) ( ) ττ−τ=∗= ∫
∞

∞−

dthxthtxty

Convolution of         and( )tx ( )th

• The output of any continuous time, linear, time-invariant (LTI) 
system is the convolution

 

of the input        with the impulse 
response of the system

( )tx
( )th
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Why not Analog Sensors and 
Calculation Systems ?

Voltmeter

Torpedo Data Computer (1940s)

Slide
Rule

• Measurement Repeatability

• Environmental Sensitivity

• Size

• Complexity

• Cost

Disadvantages

Courtesy of US Navy

Courtesy of Hannes Grobe

Courtesy of oschene
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems
– General properties
– A/D Conversion
– Sampling Theorem and Aliasing
– Convolution of Discrete Time Signals
– Fourier Properties of Signals

 Continuous vs. Discrete 
 Periodic vs. Aperiodic
 

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Sampled Data Systems

• Digital signal processing deals with sampled data

• Digital processing differs from processing continuous 
(analog) signals

• Digital Samples are obtained with a “Sample and Hold”

 
(S/H) Amplifier followed by an “Analog-to-Digital”

 

(A/D) 
converter

– Sampling rate
– Word length
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Waveform Sampling

• Sampling converts a continuous signal into a sequence of 
numbers

• Radar signals are complex

Continuous-time
System

( )tx

Discrete-time
System

[ ]nx

A/D Converter
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems
– General properties
– A/D Conversion
– Sampling Theorem and Aliasing
– Convolution of Discrete Time Signals
– Fourier Properties of Signals

 Continuous vs. Discrete 
 Periodic vs. Aperiodic
 

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Ideal Analog to Digital (A/D) Converter
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“Non-Perfect Nature”
 

of A/D Converters

Output

Input
Offset

Actual

Ideal

• Gain
• Missing bits
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• Nonlinearity
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Single Tone A/D Converter Testing
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A/D Word Length

• A / D output is signed N bit integers 
– Twos complement arithmetic
– Quantization noise power =

• Signal-to-noise ratio                                  must fit 
within the word length:

– = maximum signal power (target, jamming, 
clutter)

– = thermal noise power in A / D input

– Typically,            to reduce clipping (limiting)

• Required word length:

( ) ,N/S,SNR o
2

oN

2S

4≈α

SNRlog10SNR 10DB =

o
1L N12/1S2 <α>−

( ) 2.16/SNRL DB +>

12/1

A/D Saturation

Maximum Signal

Noise Quantization

Noise Signal

Head Room (~10 dB)

Foot Room (~10 dB)

Receiver
Dynamic Range
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems
– General properties
– A/D Conversion
– Sampling Theorem and Aliasing
– Convolution of Discrete Time Signals
– Fourier Properties of Signals

 Continuous vs. Discrete 
 Periodic vs. Aperiodic
 

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Waveform Sampling

• Sampling converts a continuous signal into a sequence of 
numbers

• Radar signals are complex

Continuous-time
System

( )tx

Discrete-time
System

[ ]nx

A/D Converter
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Sampling -
 

Overview

• Sampling Theorem constraint (a.k.a. Nyquist criterion) to 
prevent “aliasing”:

– For continuous aperiodic signals:  

• Nyquist criterion:
– Permits reconstruction via a low pass filtering
– Eliminates Aliasing

=≥ ss FB2F Sampling Frequency
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Signal Sampling Issues

• Signal Reconstruction

• Elimination of “Aliasing”

( )FX

0

• • •

sF2sF

LPF ( )FXc

0

B2
B2Fs >

( )FX

0
• • •

sF sF3sF2 sF4sF−
• • •

Overlapping, Aliased Spectra

B2Fs <
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The Sampling Theorem

• If          is strictly band limited, 

then,         may be uniquely recovered from its samples       if   

The frequency       is called the Nyquist frequency, and the 
minimum sampling frequency,                 , is called the 
Nyquist rate

)t(xc

BF0)F(X >= for

)t(xc [ ]nx

B2
T
2F

S
S ≥

π
=

B2FS =
B
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Spectrum of a Sampled Signal

• Sampling periodically replicates the spectrum
– Fourier transform of a sampled signal is periodic

• If            and            are the spectra of          and ( )FXc ( )FX

( ) ( )

( ) ( ) ( )

[ ] sF/nF2j

n

Ft2j
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dtenTttgFX
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⎛
−δ=

=
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Distortion of a Signal Spectrum by “Aliasing”

• Assume            band limited so that
1

B

( )FXc

B− F

ST/1

B

( )FX

B− SFSF−

ST/1

2/FS

( )FX

SFSF− 2/FS−

)t(xc

Bf,0)f(X >=

• If           is sampled with

• If           is sampled with

B2FS ≥
)t(xc

)t(xc

B2FS <
Aliased parts of spectrum

for

F

F

No Aliasing

● ● ● ● ● ●

● ● ● ● ● ●
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Effect of Sampling Rate on Frequency
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Adapted from Proakis and Manolakis, Reference 1
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Spectrum of Reconstructed Signal
Frequency Spectrum
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems
– General properties
– A/D Conversion
– Sampling Theorem and Aliasing
– Convolution of Discrete Time Signals
– Fourier Properties of Signals

 Continuous vs. Discrete 
 Periodic vs. Aperiodic
 

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Convolution for Discrete Time Systems

( ) ( ) ( ) ττ−τ= ∫
∞

∞−

dtxhty

Continuous
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( )tx ( )ty
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Graphical Implementation of 
Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhny
kk

−=−= ∑∑
∞

−∞=

∞

−∞=

Example:

0    1   2  

1

2
3

[ ]=kh
1    2   3    4   5

[ ]=kx 2

4

3

11

• Step 1 :  Plot the sequences,          and[ ]kx [ ]kh
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Graphical Implementation of 
Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhny
kk

−=−= ∑∑
∞

−∞=

∞

−∞=

Example:

0    1   2  

1

2
3

[ ]=kh
1    2   3    4   5

[ ]=kx 2

4

3

11

• Step 2 : Take one of the sequences and time reverse it

[ ]=− kh
-2   -1   0

1
2

3
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Graphical Implementation of 
Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhny
kk

−=−= ∑∑
∞

−∞=

∞

−∞=

Example:

0    1   2  

1

2
3

[ ]=kh
1    2   3    4   5

[ ]=kx 2

4

3

11

• Step 3 : Shift             by     , yielding
– a shift to the left
– a shift to the right

[ ]kh −

[ ]=− kh
-2   -1   0

1
2

3

n

0n >
0n < [ ]=− knh

n-2,n-1,n

1
2

3
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Graphical Implementation of 
Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhny
kk

−=−= ∑∑
∞

−∞=

∞

−∞=

Example:

0    1   2  

1

2
3

[ ]=kh
1    2   3    4   5

[ ]=kx 2

4

3

11

• Step 4 : For each value of    ,multiply the sequences          
and               ; and add products together for all values of 
to produce 

[ ]knh −

[ ]=− kh
-2   -1   0

1
2

3

n
k

[ ]kx

[ ]ny
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Graphical Implementation of 
Convolution

No overlap –

 

= 0

[ ] [ ] [ ] [ ] [ ]knhkxknxkhny
kk
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−∞=

∞

−∞=
Example:

0    1   2  

1

2
3

[ ]=kh [ ]=− kh
-2   -1   0
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11
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[ ]=kx
2

4

3

11
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-2    -1    0    1    2   3    4    5
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10
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0
O

ut
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Graphical Implementation of 
Convolution

One sample overlaps –

 

= (1x1) = 1
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Graphical Implementation of 
Convolution

Two samples overlaps –

 

= (1x2)+(2x1) = 4
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Graphical Implementation of 
Convolution

Three samples overlaps –

 

= (1x3)+(2x2)+(4x1) = 11
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Graphical Implementation of 
Convolution

Three samples overlaps –

 

= (2x3)+(4x2)+(3x1) = 17
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Graphical Implementation of 
Convolution

Three samples overlaps –

 

= (4x3)+(3x2)+(1x1) = 17
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Graphical Implementation of 
Convolution

Two samples overlaps –

 

= (3x3)+(1x2) = 11
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Graphical Implementation of 
Convolution

One sample overlaps –

 

= (1x3) = 3
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Graphical Implementation of 
Convolution

No overlap –

 

= 0
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Summary-
 

Linear Discrete Time Systems

• Any Linear and Time-Invariant (LTI) system can be 
completely described by its impulse response sequence

• The output of any LTI can be determined using the 
convolution summation

• The impulse response provides the basis for the analysis of 
an LTI system in the time-domain

• The frequency response function provides the basis for the 
analysis of an LTI system in the frequency-domain

[ ] [ ]nhn
H
→δ

[ ] [ ] [ ] ∞<<∞−−= ∑
∞

−∞=

n,knxkhny
k

Adapted from MIT LL Lecture Series by D. Manolakis



Radar Systems Course    47
Review Signals, Systems & DSP  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems
– General properties
– A/D Conversion
– Sampling Theorem and Aliasing
– Convolution of Discrete Time Signals
– Fourier Properties of Signals

 Continuous vs. Discrete 
 Periodic vs. Aperiodic
 

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Frequency Analysis of Signals

• Decomposition of signals into their frequency components
– A series of sinusoids of complex exponentials

• The general nature of signals
– Continuous or discrete
– Aperiodic or periodic

• Radar echoes, from each transmitted pulse, are continuous

 
and aperiodic, and are usually transformed into discrete 
signals by an A/D converter before further processing

– Complex signals
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Time and Frequency Domains

Analysis

Synthesis

Fourier Transform

Inverse Fourier Transform

Time History Frequency Spectrum

Frequency DomainTime Domain
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Fourier Properties of Signals

• Continuous-Time Signals
– Periodic Signals: Fourier Series
– Aperiodic Signals: Fourier Transform

• Discrete-Time Signals
– Periodic Signals: Fourier Series
– Aperiodic Signals: Fourier Transform
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Fourier Transform for 
Continuous-Time Aperiodic Signals

0 0

Adapted from Manolakis et al, Reference 1

Time Domain
Continuous and Aperiodic Signals

Frequency Domain
Continuous and Aperiodic Signals
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Fourier Properties of Signals

• Continuous-Time Signals
– Periodic Signals: Fourier Series
– Aperiodic Signals: Fourier Transform

• Discrete-Time Signals
– Periodic Signals: Fourier Series
– Aperiodic Signals: Fourier Transform
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Fourier Transform for
 Discrete-Time Aperiodic Signals

Frequency Domain
Continuous and Periodic Signals

Time Domain
Discrete and Aperiodic Signals
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Adapted from Malolakis et al, Reference 1
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Summary of Time to Frequency Domain 
Properties
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time 
Systems

• Discrete Fourier Transform (DFT)
– Calculation

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Direct DFT Computation

• 1.          evaluations of trigonometric functions
• 2.          real (      complex) multiplications
• 3.                    real (                 complex) additions
• 4. A number of indexing and addressing operations      
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time 
Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters



Radar Systems Course    58
Review Signals, Systems & DSP  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Fast Fourier Transform (FFT)

• An algorithm for each efficiently computing the Discrete Fourier

 
Transform (DFT) and its inverse

• DFT

 

MADS (Multiplies and Divides)

• FFT

 

MADS

• FFT algorithm Development  -

 

Cooley / Tukey (1965)      Gauss (1805)

• Many variations and efficiencies of the FFT algorithm exist
– Decimation in Time (input -

 

bit reversed, output -

 

natural order) 
– Decimation in Frequency (input -

 

natural order, output -

 

bit reversed) 

• The FFT calculation is broken down into a number of  sequential stages, 
each stage consisting of a number of relatively small calculations called 
“Butterflies”
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Radix 2 Decimation in Time FFT Algorithm

• Divide DFT of size N into two interleaved DFTs, each of size 
N/2

– Example will be  
– Input to each DFT are even and odd         s , respectively

• Solve each stage recursively, until the size of the stage’s 
DFT is 2.
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Radix 2 Decimation in Time FFT 
Algorithm (continued)

• Using the periodicity of the complex exponentials:

• And the following properties of the “twiddle factors”:

• A block diagram of this computational flow is graphically 
illustrated in the next chart for an 8 point FFT 
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8 Point Decimation in Time FFT Algorithm
 (After First Decimation)
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Decimation of 4 Point into two 2 point DFTs

• If N/2 is even,        and        may again be decimated

• This leads to: 
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Butterfly for 2 Point DFT

[ ] [ ] [ ]1q0q0Q +=[ ]0q

[ ]1q [ ] [ ] [ ]1q0q1Q −=

[ ]kq [ ]kQ

1−

Now, Putting it all together…..
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Flow of 8-Point FFT
 (Radix 2 -

 
Decimation in Time Algorithm)
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Basic FFT Computation  Flow Graph

• Each “Butterfly”

 

takes 2 MADS (Multiplies and Adds)
• Twiddle Factors (For 8 point FFT)

• 12 Butterflies implies 12 MADS vs. 64 MADS for 8 point DFT

• 512 point FFT more than 100 times faster than 512 DFT
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Computational Speed –
 

DFT vs. FFT

• Discrete Fourier Transform  (O ~ N2)
• Fast Fourier Transform (O ~ N log2 N)
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Fast Fourier Transform (FFT) -
 

Summary

• Fast Fourier Transform (FFT) algorithms make possible the 
computation of DFT with O ((N/2) log2 N) MADS as opposed to O N2 

MADS

• Many other implementations of the FFT exist:
– Radix 2 decimation in frequency algorithm
– Radar-Brenner algorithm
– Bluestein’s algorithm
– Prime Factor algorithm

• The details of FFT algorithms are important to the designers of 
real-time DSP systems in software or hardware

• An interesting history of FFT algorithms 
– Heideman, Johnson, and Burrus, “Gauss and the History of FFT,”

 
IEEE ASSP Magazine, Vol. 1, No. 4, pp. 14-21, October 1984
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time 
Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Finite and Infinite Response Filters

• Infinite Impulse Response (IIR) Filters
– Output of filter depends on past time history
– Example :

• Finite Impulse Response (FIR) Filters
– Output depends on the finite past
– Example: DFT

– Other examples:
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Four Basic Filter Types-
 

An Idealization

Ideal Low Pass Filter

Ideal Bandstop FilterIdeal Bandpass Filter

Ideal High Pass Filter
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Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time 
Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters
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Windowing / Weighting of Filters

• If we take a square pulse, sample it M times, and calculate the 
Fourier transform of this uniform rectangular “window”:

• This is recognized as the sinc function which has 13 dB sidelobes

• If lower sidelobes are needed , at the cost of a widened pass band, 
one can multiply the elements of the pulse sequence with one of a 
number of weighting functions, which will adjust the sidelobes 
appropriately 
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Commonly Used Window Functions

• Rectangular

• Bartlett (triangular)

• Hanning

• Hamming

• Blackman
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Comparison of Common Windows

Type of Window Peak Sidelobe 
Amplitude (dB)

Approximate 
Width of Main 

Lobe
Rectangular

Bartlett
(triangular)

Hanning

Hamming

Blackman
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Hamming
Rectangular

Comparison of Rectangular & Hamming  
Windows
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Summary

• A brief review of the prerequisite Signal & Systems, and 
Digital Signal Processing knowledge base for this radar 
course has been presented

– Viewers requiring a more in depth exposition of this material 
should consult the references at the end of the lecture

• The topics discussed were:
– Continuous signals and systems
– Sampled data and discrete time systems
– Discrete Fourier Transform (DFT)
– Fast Fourier Transform (FFT)
– Finite Impulse Response (FIR) filters
– Weighting of filters
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Homework Problems

• From Proakis and Manolakis, Reference 1
– Problems 2.1, 2.17, 4.9a and b, 4.10 a and b, 6.1, 6.9 a and b, 

8.1 and 8.8

• Or

• And from Hays, Reference 4
– Problems 1.41, 1.49, 1.54, 1.59, 2.46, 2.57, 2.58, 3.27, 3.28, 

3.34, 6.44, 6.45
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